3.4.55 \(\int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\) [355]

3.4.55.1 Optimal result
3.4.55.2 Mathematica [A] (verified)
3.4.55.3 Rubi [A] (warning: unable to verify)
3.4.55.4 Maple [B] (verified)
3.4.55.5 Fricas [B] (verification not implemented)
3.4.55.6 Sympy [F]
3.4.55.7 Maxima [F]
3.4.55.8 Giac [F(-1)]
3.4.55.9 Mupad [B] (verification not implemented)

3.4.55.1 Optimal result

Integrand size = 33, antiderivative size = 219 \[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {(3 A b-2 a B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{a^{5/2} d}+\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {(i A-B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {b \left (a^2 A+3 A b^2-2 a b B\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}} \]

output
(3*A*b-2*B*a)*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/a^(5/2)/d+(I*A+B)*ar 
ctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d-(I*A-B)*arctan 
h((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(a+I*b)^(3/2)/d-b*(A*a^2+3*A*b^2-2 
*B*a*b)/a^2/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)-A*cot(d*x+c)/a/d/(a+b*tan(d 
*x+c))^(1/2)
 
3.4.55.2 Mathematica [A] (verified)

Time = 4.17 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.95 \[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {\frac {(3 A b-2 a B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}+a^2 \left (\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2}}+\frac {(-i A+B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2}}\right )-\frac {b \left (a^2 A+3 A b^2-2 a b B\right )}{\left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {a A \cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}}{a^2 d} \]

input
Integrate[(Cot[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2) 
,x]
 
output
(((3*A*b - 2*a*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] + a^2 
*(((I*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/(a - I*b)^(3 
/2) + (((-I)*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/(a + 
I*b)^(3/2)) - (b*(a^2*A + 3*A*b^2 - 2*a*b*B))/((a^2 + b^2)*Sqrt[a + b*Tan[ 
c + d*x]]) - (a*A*Cot[c + d*x])/Sqrt[a + b*Tan[c + d*x]])/(a^2*d)
 
3.4.55.3 Rubi [A] (warning: unable to verify)

Time = 1.82 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.16, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.576, Rules used = {3042, 4092, 27, 3042, 4132, 27, 3042, 4136, 27, 3042, 4022, 3042, 4020, 25, 73, 221, 4117, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^2 (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle -\frac {\int \frac {\cot (c+d x) \left (3 A b \tan ^2(c+d x)+2 a A \tan (c+d x)+3 A b-2 a B\right )}{2 (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\cot (c+d x) \left (3 A b \tan ^2(c+d x)+2 a A \tan (c+d x)+3 A b-2 a B\right )}{(a+b \tan (c+d x))^{3/2}}dx}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {3 A b \tan (c+d x)^2+2 a A \tan (c+d x)+3 A b-2 a B}{\tan (c+d x) (a+b \tan (c+d x))^{3/2}}dx}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4132

\(\displaystyle -\frac {\frac {2 \int \frac {\cot (c+d x) \left (2 (a A+b B) \tan (c+d x) a^2+b \left (A a^2-2 b B a+3 A b^2\right ) \tan ^2(c+d x)+\left (a^2+b^2\right ) (3 A b-2 a B)\right )}{2 \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\cot (c+d x) \left (2 (a A+b B) \tan (c+d x) a^2+b \left (A a^2-2 b B a+3 A b^2\right ) \tan ^2(c+d x)+\left (a^2+b^2\right ) (3 A b-2 a B)\right )}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {2 (a A+b B) \tan (c+d x) a^2+b \left (A a^2-2 b B a+3 A b^2\right ) \tan (c+d x)^2+\left (a^2+b^2\right ) (3 A b-2 a B)}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4136

\(\displaystyle -\frac {\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx+\int \frac {2 \left (a^2 (a A+b B)-a^2 (A b-a B) \tan (c+d x)\right )}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\cot (c+d x) \left (\tan ^2(c+d x)+1\right )}{\sqrt {a+b \tan (c+d x)}}dx+2 \int \frac {a^2 (a A+b B)-a^2 (A b-a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \int \frac {a^2 (a A+b B)-a^2 (A b-a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{2 a}-\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4022

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \left (\frac {1}{2} a^2 (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \left (\frac {1}{2} a^2 (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^2 (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 4020

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \left (\frac {i a^2 (a+i b) (A-i B) \int -\frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}-\frac {i a^2 (a-i b) (A+i B) \int -\frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \left (\frac {i a^2 (a-i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {a+b \tan (c+d x)}}d(-i \tan (c+d x))}{2 d}-\frac {i a^2 (a+i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}d(i \tan (c+d x))}{2 d}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \left (\frac {a^2 (a-i b) (A+i B) \int \frac {1}{-\frac {i \tan ^2(c+d x)}{b}-\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}+\frac {a^2 (a+i b) (A-i B) \int \frac {1}{\frac {i \tan ^2(c+d x)}{b}+\frac {i a}{b}+1}d\sqrt {a+b \tan (c+d x)}}{b d}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\tan (c+d x)^2+1}{\tan (c+d x) \sqrt {a+b \tan (c+d x)}}dx+2 \left (\frac {a^2 (a+i b) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {a^2 (a-i b) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 4117

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {\left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {\cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+2 \left (\frac {a^2 (a+i b) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {a^2 (a-i b) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {2 \left (a^2+b^2\right ) (3 A b-2 a B) \int \frac {1}{\frac {a+b \tan (c+d x)}{b}-\frac {a}{b}}d\sqrt {a+b \tan (c+d x)}}{b d}+2 \left (\frac {a^2 (a+i b) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {a^2 (a-i b) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {A \cot (c+d x)}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2 A-2 a b B+3 A b^2\right )}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 \left (a^2+b^2\right ) (3 A b-2 a B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+2 \left (\frac {a^2 (a+i b) (A-i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {a^2 (a-i b) (A+i B) \arctan \left (\frac {\tan (c+d x)}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}\right )}{a \left (a^2+b^2\right )}}{2 a}\)

input
Int[(Cot[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]
 
output
-((A*Cot[c + d*x])/(a*d*Sqrt[a + b*Tan[c + d*x]])) - ((2*((a^2*(a + I*b)*( 
A - I*B)*ArcTan[Tan[c + d*x]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) + (a^2*(a - 
 I*b)*(A + I*B)*ArcTan[Tan[c + d*x]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)) - ( 
2*(a^2 + b^2)*(3*A*b - 2*a*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/( 
Sqrt[a]*d))/(a*(a^2 + b^2)) + (2*b*(a^2*A + 3*A*b^2 - 2*a*b*B))/(a*(a^2 + 
b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/(2*a)
 

3.4.55.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4136
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^ 
n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[ 
(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)   Int[(c + d*Tan[e + f*x])^n*((1 + Tan[ 
e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, 
 C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] & 
&  !GtQ[n, 0] &&  !LeQ[n, -1]
 
3.4.55.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(8042\) vs. \(2(191)=382\).

Time = 0.24 (sec) , antiderivative size = 8043, normalized size of antiderivative = 36.73

method result size
derivativedivides \(\text {Expression too large to display}\) \(8043\)
default \(\text {Expression too large to display}\) \(8043\)

input
int(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNV 
ERBOSE)
 
output
result too large to display
 
3.4.55.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4530 vs. \(2 (186) = 372\).

Time = 17.37 (sec) , antiderivative size = 9075, normalized size of antiderivative = 41.44 \[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorith 
m="fricas")
 
output
Too large to include
 
3.4.55.6 Sympy [F]

\[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot ^{2}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cot(d*x+c)**2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)
 
output
Integral((A + B*tan(c + d*x))*cot(c + d*x)**2/(a + b*tan(c + d*x))**(3/2), 
 x)
 
3.4.55.7 Maxima [F]

\[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{2}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorith 
m="maxima")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)^2/(b*tan(d*x + c) + a)^(3/2), 
x)
 
3.4.55.8 Giac [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorith 
m="giac")
 
output
Timed out
 
3.4.55.9 Mupad [B] (verification not implemented)

Time = 12.65 (sec) , antiderivative size = 38368, normalized size of antiderivative = 175.20 \[ \int \frac {\cot ^2(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
int((cot(c + d*x)^2*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2),x)
 
output
((2*(A*b^3 - B*a*b^2))/(a*b^2 + a^3) - ((a + b*tan(c + d*x))*(3*A*b^3 + A* 
a^2*b - 2*B*a*b^2))/(a*(a*b^2 + a^3)))/(d*(a + b*tan(c + d*x))^(3/2) - a*d 
*(a + b*tan(c + d*x))^(1/2)) + atan(-((((((8*A^2*a^3*d^2 - 8*B^2*a^3*d^2 - 
 16*A*B*b^3*d^2 - 24*A^2*a*b^2*d^2 + 24*B^2*a*b^2*d^2 + 48*A*B*a^2*b*d^2)^ 
2/4 - (A^4 + 2*A^2*B^2 + B^4)*(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 
48*a^4*b^2*d^4))^(1/2) - 4*A^2*a^3*d^2 + 4*B^2*a^3*d^2 + 8*A*B*b^3*d^2 + 1 
2*A^2*a*b^2*d^2 - 12*B^2*a*b^2*d^2 - 24*A*B*a^2*b*d^2)/(16*(a^6*d^4 + b^6* 
d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4)))^(1/2)*(((a + b*tan(c + d*x))^(1/2)* 
(576*A^2*a^15*b^28*d^7 + 5184*A^2*a^17*b^26*d^7 + 21568*A^2*a^19*b^24*d^7 
+ 53888*A^2*a^21*b^22*d^7 + 87808*A^2*a^23*b^20*d^7 + 94976*A^2*a^25*b^18* 
d^7 + 66304*A^2*a^27*b^16*d^7 + 27008*A^2*a^29*b^14*d^7 + 4288*A^2*a^31*b^ 
12*d^7 - 832*A^2*a^33*b^10*d^7 - 320*A^2*a^35*b^8*d^7 + 256*B^2*a^17*b^26* 
d^7 + 1472*B^2*a^19*b^24*d^7 + 3712*B^2*a^21*b^22*d^7 + 6272*B^2*a^23*b^20 
*d^7 + 9856*B^2*a^25*b^18*d^7 + 14336*B^2*a^27*b^16*d^7 + 15232*B^2*a^29*b 
^14*d^7 + 10112*B^2*a^31*b^12*d^7 + 3712*B^2*a^33*b^10*d^7 + 576*B^2*a^35* 
b^8*d^7 - 768*A*B*a^16*b^27*d^7 - 6400*A*B*a^18*b^25*d^7 - 25856*A*B*a^20* 
b^23*d^7 - 66304*A*B*a^22*b^21*d^7 - 116480*A*B*a^24*b^19*d^7 - 141568*A*B 
*a^26*b^17*d^7 - 116480*A*B*a^28*b^15*d^7 - 61696*A*B*a^30*b^13*d^7 - 1894 
4*A*B*a^32*b^11*d^7 - 2560*A*B*a^34*b^9*d^7) - ((((8*A^2*a^3*d^2 - 8*B^2*a 
^3*d^2 - 16*A*B*b^3*d^2 - 24*A^2*a*b^2*d^2 + 24*B^2*a*b^2*d^2 + 48*A*B*...